

Milano Teatro Dal Verme 2-3-4 Febbraio 2023

Angelo Michele Carella Pier Luigi Zinzani

Paolo Corradini Mauro Krampera Fabrizio Pane Adriano Venditti

Leucemia acuta linfoblastica

Milano, 2-3-4 Febbraio 2023

DICHIARAZIONE

Felicetto Ferrara

Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del Ministero della Salute, è richiesta la trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo sanitario.

- Posizione di dipendente in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE / NOME AZIENDA)
- Consulenza ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE / NOME AZIENDA)
- Fondi per la ricerca da aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE / NOME AZIENDA)
- Partecipazione ad Advisory Board (ABBVIE, GLAXO, NOVARTIS, JAZZ, JANNSENN, ASTELLAS, PFIZER)
- Titolarietà di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE /

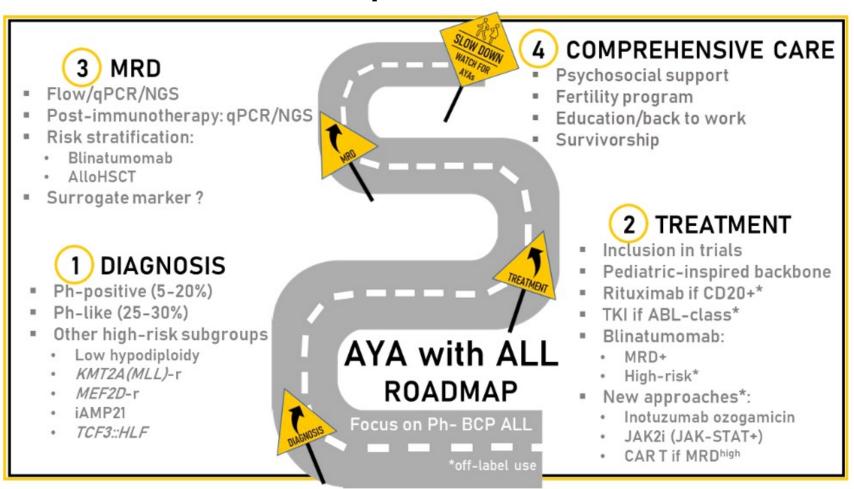
NOME AZIENDA)

- Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE / NOME AZIENDA)
- Altro

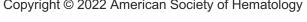
Educational Program ASH 2022

New developments in ALL in AYA

Nicolas Boissel

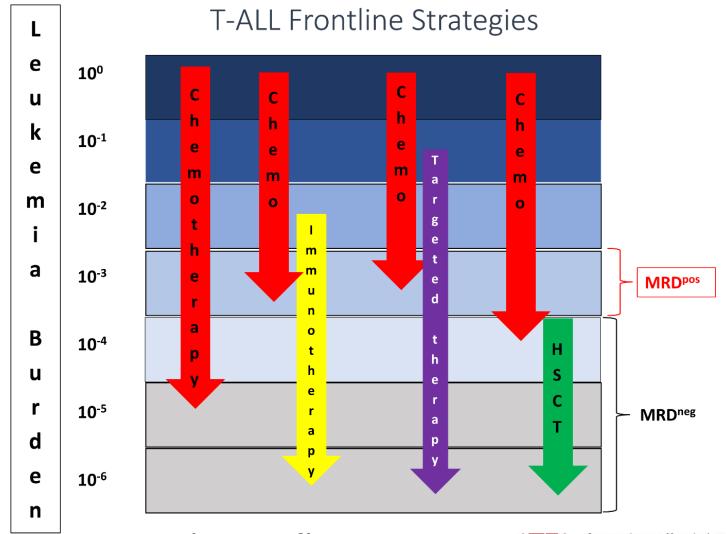

Optimal approach to T-cell ALL

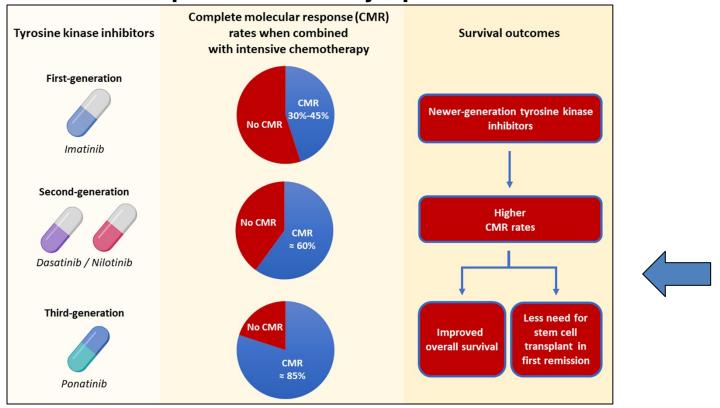
Kristen M. O'Dwyer


Ph+ ALL in 2022: is there an optimal approach?

Matthew J. Wieduwilt

New developments in ALL in AYA

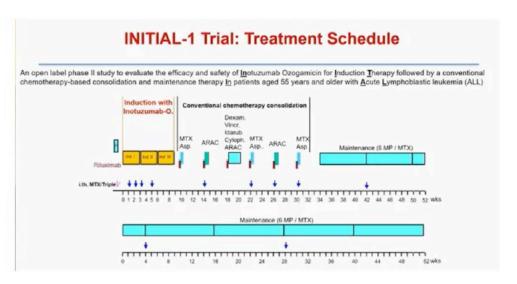

Copyright © 2022 American Society of Hematology Nicolas Boissel, Hematol Educ Program, 2022,



Optimal approach to T-cell ALL

Milano, 2-3-4 Febbraio 2023

Evidence-Based Minireview: What is the optimal tyrosine kinase inhibitor for adults with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia?



Fadi G. Haddad, Nicholas J. Short, Hematology Am Soc Hematol Educ Program, 2022,

INITIAL-1: Phase II Study to Evaluate the Efficacy and Safety of Inotuzumab for ALL Induction Therapy

- Front line induction treatment with 3 cycles of inotuzumab monotherapy followed by conventional consolidation for patients >55 years of age
- Primary objective: To evaluate the efficacy of an inotuzumab induction therapy, defined as the number of patients being alive in first remission one year after start of induction therapy.
- Secondary objective: To evaluate the safety of an inotuzumab ozogamicin induction therapy.

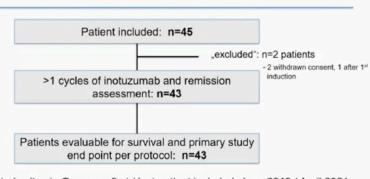
INITIAL-1: Phase II Study to Evaluate the Efficacy and Safety of Inotuzumab for ALL Induction Therapy

- Primary endpoint: Event free survival (EFS) at 12-months follow-up.
 An event is any of the following: persisting bone marrow blasts after two cycles of inotuzumab, relapse or death.
- Secondary endpoints: Remission rate and rate of MRD neg. remission after induction treatment; RFS and OS after two years; rate of deaths during induction and / or deaths in CR; proportion of patients with molecular relapse.
- Hypothesis: An event rate of ≤40% at 12 months follow-up is considered to qualify the experimental treatment as very promising for additional testing.
- 42 evaluable patients needed for primary endpoint analysis (type I error probability of α=0.05 and power of 0.80 was chosen).

INITIAL-1: Main Inclusion and Exclusion Criteria

Main inclusion criteria

- 1. Male or female patients, > 55 years of age and fit for therapy
- 2. CD22-positive acute lymphoblastic
- 3. No previous ALL-specific treatment with the exception of a pre-phase
- 4. With or without documented CNS involvement


Main exclusion criteria

- 1. Philadelphia-chromosome or BCR-ABL positive ALL
- 2. Burkitt's or mixed phenotype acute leukemia based on the WHO 2008 criteria
- 3. Peripheral absolute lymphoblast count >10 /nl before start of study medication

INITIAL-1 Trial: Patients Characteristics

	n=43
Median age (range), years	64 (56-80)
≥65 years ≥70 years	20 pts 12 pts
Female / male, n	20 pts / 23 pts
Commom ALL / pro B-ALL, n	38 pts / 5 pts
Blasts ≥20% positive for CD20, n	17 pts
Median CD22 expression (range)	69% (21-99%)
Blasts ≥20-40% positive for CD22, n	5 pts
Blasts >40-60% positive for CD22, n	10 pts
Blasts >60% positive for CD22, n	28 pts

INITIAL-1 Trial: Consort diagram

13 study sites in Germany, first / last patient included: June 2018 / April 2021

Stelljes. ASH 2022. Abstr 212.

GMALL-INITIAL1: Study Design

Single-arm, open-label phase II trial

Patients aged >55 yr
with untreated CD22+,
Ph- ALL considered fit
for therapy ±
documented CNS
involvement
(N = 45)

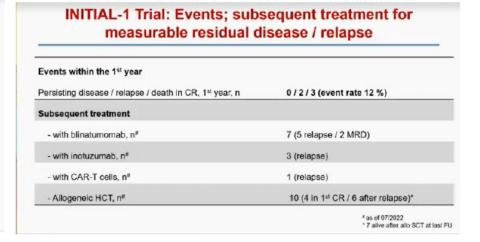
Induction (up to 3 cycles)

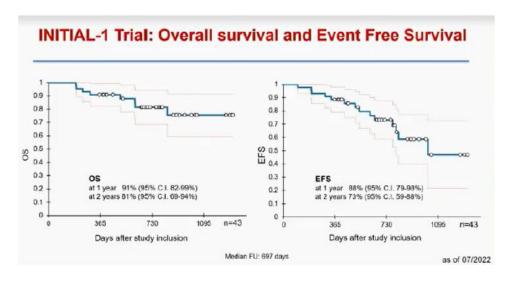
Inotuzumab Ozogamicin 0.5 mg/m² D1, 8, 15 each cycle*† Consolidation

Conventional Chemotherapy

Maintenance

6-Mercaptopurine/ Methotrexate


2 yr


*Cycle 1, D1 dose 0.8 mg/m 2 . †In combination with 10 mg/m 2 dexamethasone D7, 8 and D14, 17 plus MTX, AraC, Dex.

- Primary endpoint: 12-mo EFS
- Secondary endpoints: CR rate, MRD negativity after induction, 2-yr RFS, 2-yr OS, deaths during induction or CR, molecular relapse, safety

Milano 2.3.4 Echbraio 2023

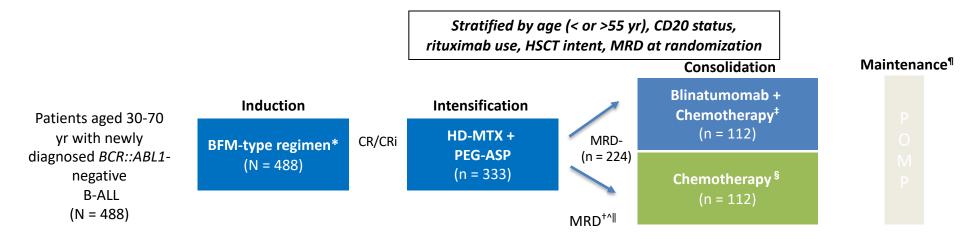
valuable for hematological remission, n=43	
CR / CRi after 2 induction cycles	43 pts (100%)
Patients receiving 3 cycles inotuzumab	42 pts (94%)*
Early deaths within the first 6 months	0
valuable for MRD (by PCR), n=43	
MRD negative after after the 2 nd induction cycle	23/43 pts (53%)
MRD negative after after three induction cycles	31/42 pts (74%)
ime between 1st - 2nd induction, median (range)	21 days (21-31)
ime between 2 nd - 3 rd induction, median (range)	28 days (27-33)
ime between 3rd induction - 1st consolidation, median (range)	30 days (26-42)

AEs >5% (CTC 3-4; CTCAE 4.0)	Induction 1 (n=43)	Induction 2 (n=43)	Induction 3 (n=42)
Leukocytopenia, %	74	19	2
Anemia, %	37	5	0
Thrombocytopenia, %	49	7	2
Elevation of GOT / GPT, %	14	0	0
Elevation of bilirubin, %	2	0	0
Hyperglycemia, %	12	5	2
Febrile neutropenia, %	5	0	0
veno occlusive disease, %	0	2 (1 pts.)	0

Stelljes. ASH 2022. Abstr 212.

GMALL-INITIAL1: Investigators' Conclusions

- Inotuzumab ozogamicin monotherapy appeared to be highly effective as frontline induction therapy for patients >55 yr of age with newly diagnosed CD22+ B-lymphoblastic leukemia
 - MRD-negative CR after 3 induction cycles: 74%
 - OS after 2 yr (following conventional consolidation and maintenance): 81%
- Toxicity acceptable with no early deaths within first 6 mo
- Investigators suggested that inotuzumab induction therapy be evaluated in prospective trials for possible integration with other regimens



ECOG-ACRIN E1910: Background

- Adults with newly diagnosed ALL who achieve CR with conventional chemotherapy often relapse, even if MRD is negative after induction, leading to suboptimal survival outcomes
- Blinatumomab: bispecific T-cell engager that binds to both CD19 and CD3
 - FDA approved for treatment of CD19+ B-ALL in first or second CR with MRD ≥0.1% and for treatment of R/R CD19+ B-ALL
- E1910-ACRIN E1910 NCTN phase III trial investigated consolidation chemotherapy ± blinatumomab to determine if addition of blinatumomab improved outcomes for patients who become MRD negative (<0.01%) after induction chemotherapy
 - Current analysis reflects median follow-up of 3.6 yr (43 mo)

ECOG-ACRIN E1910: Study Design

Multicenter, randomized, open-label phase III trial

- Regimen adapted from E2993/UKALLXII trial, including extended remission induction, addition of PEG-ASP for patients <55 yr of age, and addition of rituximab for CD20+ disease.
- MRD assessed centrally by 6-color flow cytometry, with cutoff of ≤0.01% for MRD negativity. ^
- Primary endpoint: OS in MRD^{neg} patients
- Key secondary endpoints: MRD status, RFS

STUDY FLOW

- 286 patients underwent MRD assessment, with 224 being negative and
 62 being positive.
- After blinatumomab regulatory approval in March 2018 for MRD^{pos} BCR::ABL1^{neg} B-ALL, MRD^{pos} patients were assigned to Blina arm and no longer randomized. .
- 2.5 yr of maintenance POMP timed from start of intensification.
- Patients could undergo alloHSCT at discretion of treating physician, ideally after first 2 cycles of Blina in experimental arm or at any time following intensification in control arm.

ECOG-ACRIN E1910: Patient Characteristics

Postinduction CR/CRi rate: 81% (395/488)

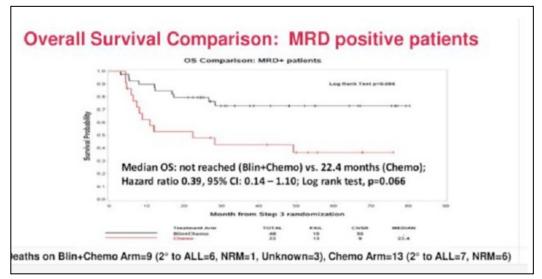
- CR rate: 75% (364/488)

- CRi rate: 6% (31/488)

MRD status after intensification

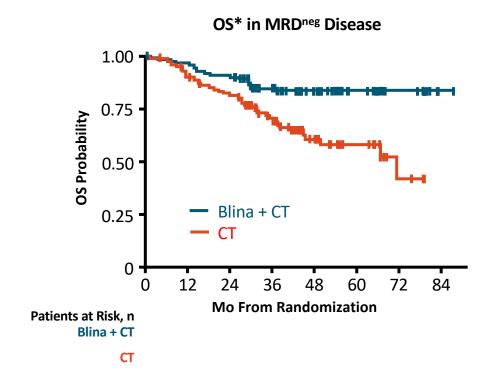
- MRD^{neg}: 78% (224/286)

- MRD^{pos}: 22% (62/286)


 At third interim analysis, 80% of patients assigned to experimental arm received ≥2 cycles of blinatumomab Baseline characteristics well balanced between arms

Characteristic	Blinatumomab + Chemotherapy (n = 152)	Chemotherapy (n = 134)
Median age, yr (range)	51 (30	-70)
MRD ^{neg} , n	112	112
Proceeded to HSCT, n	22	22
MRD ^{pos} , n	40	22

ECOG-ACRIN E1910: OS in MRD^{pos} Disease


Efficacy Outcome	Blinatumomab + Chemotherapy (n = 40)	Chemotherapy (n = 22)	HR (95% CI)	<i>P</i> Value
Median OS, mo	Not reached	22.4	0.39 (0.14-1.10)	.066
Deaths, n	9	13		

Blinatumomab demonstrated benefit in MRDpos patients

ECOG-ACRIN E1910: Survival in MRD^{neg} Disease

	Blina + CT (n = 112)	CT (n = 112)	HR (95% CI)	P
mOS,* mo • 3.6-yr OS, % • Deaths, n	NR 83 17 [†]	71.4 65 39 [‡]		.003
*Primary endpoint *n = 20 secondary t				

 At third interim efficacy analysis, **ECOG-ACRIN DSMB recommended** releasing results due to benefit observed with blinatumomab in MRDneg disease

ECOG-ACRIN E1910: Investigators' Conclusions

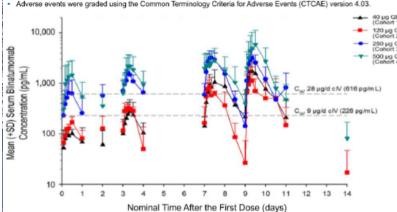
- Results from this randomized phase III trial demonstrated significant OS benefit with addition of blinatumomab to chemotherapy as consolidation therapy in adult patients with MRD-negative BCR::ABL1-negative B-ALL
- Blina + CHT was well tolerated, and no new safety signals were observed
- Investigators concluded that addition of Blina to consolidation chemotherapy <u>represents new standard of</u> <u>care for patients with MRD-negative BCR::ABL1-negative B-ALL</u>

Poster 2727 Safety and Pharmacokinetics of Subcutaneous (SC) Blinatumomab for the Treatment of Adults With Relapsed or Refractory B-Cell Precursor Acute Lymphobiastic Leukemia (R/R B-ALL): Results From a Phase 1b Study

Pilar Martinez-Sánchez¹, Gerhard Zugmaier², Paul Gordon³, Elias Jabbour⁴, José Juan Rifón⁵, Stefan Schwartz⁵, Erika Borlenghi², Francoise Huguet⁵, Jesús María Hernández Rivas⁵, Federico Lussana¹⁰, Céline Berthon¹¹ Priti Kadu¹², Hansen Wong¹³, Ana Markovic³, Yuliya Katlinskaya¹³, Alessandro Rambaldi¹⁴.¹⁵

22 patients, median age: 50 years (19-83)

METHODS Study Design Figure 1. SC blinatumomab for R/R B-ALL: study schema Cohort 2 Cohort 3 Cohort 4 Cycle 1 Days 1-7 40 µg QD 120 µg QD 250 µg QD 500 µg QD 500 µg 1,000 µg Days 8-26 250 µg

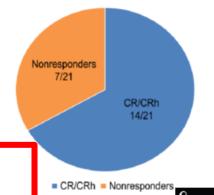

Bone marrow evaluation was performed on day 27 of each cycle and additionally on day 12 of cycle 1 in cohorts 3 and 4. QD, once daily; R/R B-ALL, relapsed/refractory B-cell acute lymphoblastic feukemia; SC, subcutaneous; TIW, three times weekly

Pharmacokinetic and pharmacodynamic assessments

· Blinatumomab serum concentrations, lymphocyte numbers, and serum cytokine concentrations were assessed predose and/or postdose for select doses in treatment cycles 1 and 2 per protocol.

Safety assessments

Adverse events were graded using the Common Terminology Criteria for Adverse Events (CTCAE) version 4.03.


Table 2. Summary of treatment-emergent adverse events

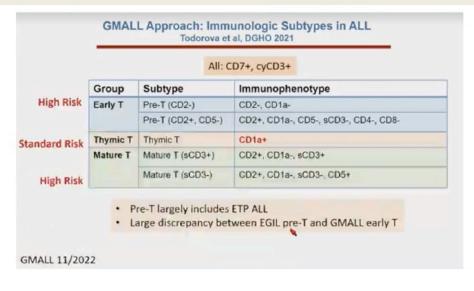
	Total (N = 22)	Cohort 1 (n = 6)	Cohort 2 (n = 3)	Cohort 3 (n = 5)	Cohort 4 (n = 8)
TEAEs (any grade)	22 (100.0)	6 (100.0)	3 (100.0)	5 (100.0)	8 (100.0)
Grade ≥ 3 TEAEs	19 (86.4)	6 (100.0)	2 (66.7)	4 (80.0)	7 (87.5)
Serious TEAEs	18 (81.8)	4 (66.7)	2 (66.7)	5 (100.0)	7 (87.5)
Serious TEAEs leading to discontinuation of SC blinatumomab (excluding disease progression)	3 (13.6)	1 (16.7)	0 (0.0)	1 (20.0)	1 (12.5)
Fatal adverse events	3 (13.6)	1a (16.7)	0 (0.0)	1 ^b (20.0)	1º (12.5)
Grade ≥ 3 TEAEs of interest					
Cytokine release syndrome	2 (9.1)	0 (0.0)	0 (0.0)	0 (0.0)	2 ^b (25.0)
Blinatumomab-associated neurotoxicitye	6 (27.3)	1 (16.7)	0 (0.0)	1 (20.0)	4f (50.0)
Transient liver enzyme elevation	2 (9.1)	0 (0.0)	0 (0.0)	1 (20.0)	1 (12.5)

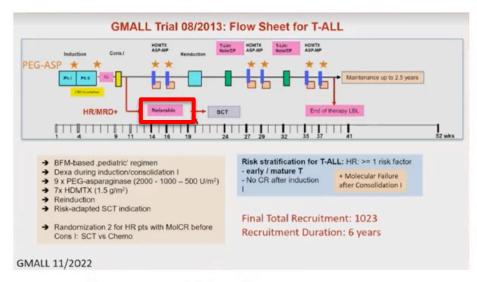
*Grade 5 herpes encephalitis unrelated to SC blinatumomab. *Progressive disease. *Refractory bleeding event unrelated to SC blinatumomab and disease progression. Each event resolved within 48 h and subsequent cycle 1 dose was restarted. At week 1 of treatment with SC blinatumomab. Two patients with neurotoxicity in week 1 and two patients in week 4, one associated with nonresponse and the other with the concomitant use of psychotropic (antipsychotic)

SC, subcutaneous; TEAE, treatment-emergent adverse event.

- Response evaluation was available for only 21^a of 22 patients.
- · Fourteen of 21 (66.7%) evaluable patients achieved CR/CRh within one cycle of SC blinatumomab
 - Cohort 1, 3/6 (50.0%)
 - Cohort 2, 2/3 (66.7%)
 - Cohort 3, 4/5 (80.0%)
 - Cohort 4, 5/7 (71.4%)
 - Two patients who did not respond were serum levels of blinatumomab.
- Thirteen of 14 patients with CR/CRh were MRD-negative after cycle 1 of SC blinatumomab
 - Eight of 14 patients underwent bone marrow evaluation at day 12, of which 100% of patients were MRD-negative on day 12.

Investigators' Conclusions


- In this ongoing phase 1b dose-escalation study, SC Blina demonstrated an acceptable safety profile and antileukemia activity in heavily pretreated pts with R/R B-ALL.
- No dose-limiting toxicities were reported in any cohort.
- PK exposures and PD profiles were consistent with those reported for the cIV regimen of blinatumomab, supporting the use of SC dosing of blinatumomab in this pt population.



51 Results of the Risk-Adapted, MRD-Stratified GMALL Trial 08/2013 in 281 T-ALL / T-Lbl Patients: Excellent Outcome of Standard Risk Thymic T-ALL

cana

	Between	8/2017-3/20	22 pts from	m 78 cent	ers	
	Total	T-ALL	T-LBL	Thymic	Early	Mature
Number	281	208	73	95	78	35
Median age	30	29	31	29	30	28
Gender (female)	22% 🔌	22%	25%	23%	24%	11%
Mediastinal tumor	58%	52%	75%	65%	37%	49%
CNS involvement	8%	10%	3%	8%	9%	14%
WBC (median)	13.119	23.380	8.200	27.500	14.740	42.600
WBC>100.000	12%	16%	0	15%	10%	34%
ubtype (available)		208 (100%)	46 (63%)	-	-	-
arly		78 (37%)	14 (30%)			-
Mature		35 (17%)	3 (6%)		-	1.
'hymic		95 (46%)	29 (63%)			· /

Goekbuget N, et al (abs 51)

Milano, 2-3-4 Febbraio 2023

GMALL Trial 08/2013: T-ALL and T-LBL Hematologic Reponse to Induction and Consolidation I

	Total	T-ALL	T-LBL	Thymic	Early	Mature
Evaluable	268	200	68	93	73	35
CR/CRu	84%	87%	74%	88%	88%	80%
Early death	4%	5%	1%	4%	5%	6%
PR	10%	7%	21%	8%	5%	9%
Failure	2%	1%	4%	0%	1%	3%

- Similar CR rates in all ALL subtypes
- Early death rates constant over decades:
- ED Causes: Mostly infections
- PR/Failure mainly extramedullary

GMALL 11/2022

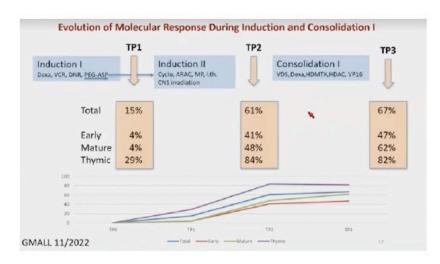
GMALL Trial 08/2013: T-ALL and T-LBL Molecular Reponse after Consolidation I

	Total	T-ALL	T-LBL	Thymic	Early	Mature
No MRD Marker (clonal ig/TCR rearrangements)	26%	15% (3% no test)	63% (84% no test)	1%	34%	14%

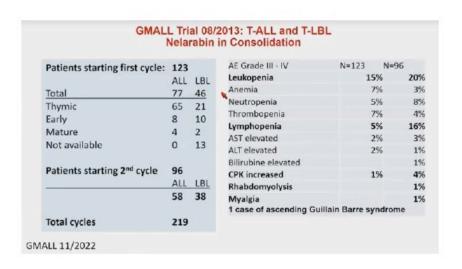
GMALL 11/2022

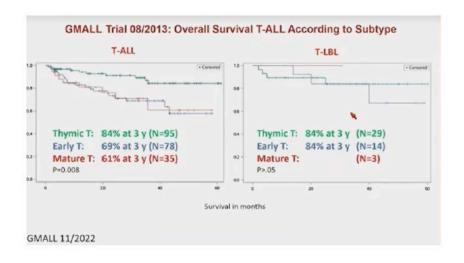
Goekbuget N, et al (abs 51)

GMALL Trial 08/2013 Response Assessment in T-LBL (including PET) Conventional \ PET Negative Positive CRu (N = 14) 12 (86%) 2 (14%) PR (N = 14) 7 (50%) 7 (50%) 1 Relapse 2 Relapses 1 Extramedullary 1 Mediastinum 1 Bone marrow GMALL 11/2022

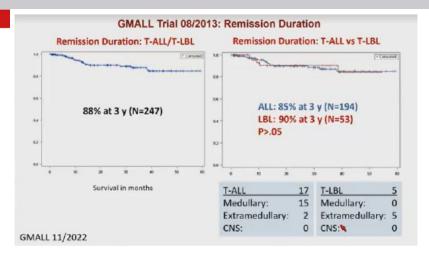

GMALL Trial 08/2013: T-ALL and T-LBL Molecular Reponse to Induction and Consolidation I

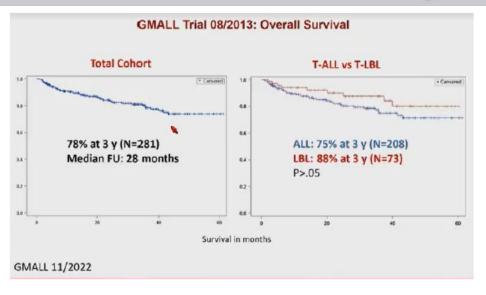
	Total	T-ALL	T-LBL	Thymic	Early	Mature
Evaluable	174	156	18	84	44	28
Molecular CR	70%	69%	78%	82%	48%	64%
Molecular Failure	10%	11%	6%	2%	27%	11%
Molecular Intermediate	20%	20%	17%	15%	25%	25%

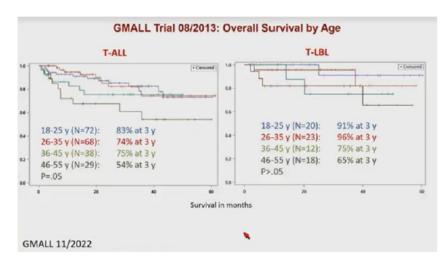

Pts with evaluable MRD test after consolidation i; calculated in relation to CR pts; Molecular CR (MolCR); MRD negative with sensitivity of at least 0.01%; Molecular Failure (MolFail): MRD positive above 0.01%; Molecular intermediate (MolIMR): MRD positive below 0.01%.


GMALL 11/2022

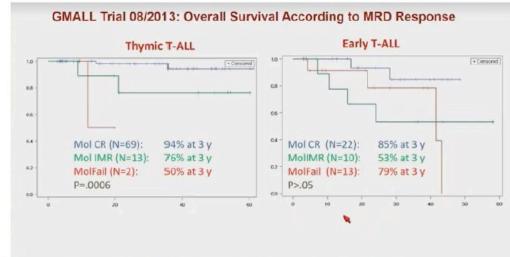
Milano, 2-3-4 Febbraio 2023




Total N=14 (13 Early	T-AII
1010111-14 (10 1011)	
MRD Response	
Mol MRD Evaluable:	13
MolCR: 1	
Mol Response: 2	
Pos. nq: 3	
MolFail: 7	
FACS MRD Evaluable:	1
FACS MRD-: 1	



Goekbuget N, et al (abs 51)



Goekbuget N, et al (abs 51)

Milano 2-3-4 Febbraio 2023

GMALL Trial 08/2013: Conclusions for T-ALL

- · Pediatric-based regimen feasible and effective up to 55 yrs
- . Intensive / individualized ASP therapy feasible in a large multicenter setting
- Excellent results in T-LBL; no prognostic indicator; no clear impact of PET
- · High CNS efficacy (zero CNS relapses)
- · Simple risk stratification of T-ALL based on CD1a expression
 - · Not part of International Consensus / WHO classification
 - · No international harmonization of classifications
- · Excellent response and survival of thymic T-ALL
 - Further molecular stratification within thymic T-Als helpful?
 - · Higher risk: WBC >100.000? MRD intermediate?
 - · Impact of Nelarabin consolidation probable but remains to be analyzed
- · Improved outcome of early T-ALL (role of SCT) but still non-satisfactory
 - · Poor MRD response and higher relapse rate
 - Higher mortality after SCT
 - · Alternative MRD markers required
 - · Nelarabine for MRD eradication ineffective
 - · New compounds for MRD persistence needed: Bortezomib, Venetoclax, CD38-AB?

GMALL 11/2022